Skip to content
Snippets Groups Projects
Commit 7326bfbd authored by ac (tb)'s avatar ac (tb)
Browse files

ncdVSvfmd qualify and leave one out

parent 57da79c1
Branches
No related tags found
No related merge requests found
function tblVelo = getStats(dxx, pData, idxDel, tblMD)
function tblVelo = getStats(dxx, pData, tblMD)
if ~exist('idxDel','var')
idxDel = [];
end
......@@ -9,11 +9,12 @@ for i = 1:length(dxx)
for j = 1:size(dxx{i},1)
m = dxx{i}(j,2);
n = dxx{i}(j,3);
if ~isempty(intersect(m,idxDel)) || ~isempty(intersect(n,idxDel))
% m and n are indices into pData
% check first if either is disqualified
if pData.disqualified(m) || pData.disqualified(n)
continue
end
if m~=n && pData.dx(m) == pData.dx(n) % same date pairs
continue
end
......
load('onh_kernel_corr_pt5_5_15.mat')
tblQualify = readtable('nyu onh matched.xlsx');
mx = regexp(tblQualify.file_name,'P(\d+)_(.+?)_(\d+-\d+-\d+)_(\d+-\d+-\d+)_(\w\w)_(.+?)_.*.img','tokens');
tblQualify.scanID = cellfun(@(x) x{1}{6},mx,'UniformOutput',false);
for i = 1:height(pData)
idxScan = find(strcmp(tblQualify.scanID,pData.scanID{i}));
qq = lower(vertcat(tblQualify.qualification_status(idxScan)));
if length(idxScan) > 1
4;
end
pData.disqualified(i) = any(strcmp(qq,'no'));
end
......@@ -84,9 +84,7 @@ parfor wx = 1:length(workList)
end
end
idxDel = [];
tblVelo = getStats(dxx,pData,idxDel,tblVFMD);
tblVelo = getStats(dxx,pData,tblVFMD);
[rho,pCorr] = corr((tblVelo.velocity),(tblVelo.dmd));
rho2 = rho^2
toc(kernelCorrStart)
......
......@@ -7,10 +7,22 @@ X1 = [t2.velocity];
X2 = [t2.velocity,t2.md];
T = t2.dmd;
mdl1 = fitrnet(X1,T,'Activations','sigmoid','LayerSizes',[1]);
cv1 = mdl1.crossval; rmse1 = cv1.kfoldLoss^0.5;
mdl2 = fitrnet(X2,T,'Activations','sigmoid','LayerSizes',[10]);
cv2 = mdl2.crossval; rmse2 = cv2.kfoldLoss^0.5;
4;
% mdl1 = fitrnet(X1,T,'Activations','relu','LayerSizes',[44]);
% cv1 = mdl1.crossval; rmse1 = cv1.kfoldLoss^0.5;
% mdl2 = fitrnet(X2,T,'Activations','sigmoid','LayerSizes',[10]);
% cv2 = mdl2.crossval; rmse2 = cv2.kfoldLoss^0.5;
% 4;
% mdl = fitrnet(X,T,"OptimizeHyperparameters","auto", "HyperparameterOptimizationOptions",struct("AcquisitionFunctionName","expected-improvement-plus"))
err = [];
for i = 1:length(X1)
trainX2 = X1;
trainX2(i) = [];
trainY2 = T;
trainY2(i) = [];
mdl = fitrnet(trainX2,trainY2,'Activations','sigmoid','LayerSizes',[10]);
pred = mdl.predict(X2(i));
err(i) = abs(T(i) - pred);
end
4;
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment