Skip to content
Snippets Groups Projects
Select Git revision
  • 7326bfbd003313dcf54eeec5d987ddf51e420511
  • main default
2 results

regnetCorr.m

Blame
  • regnetCorr.m 862 B
    function [rmse1,rmse2] = regnetCorr(tblVelo)
    % tblVelo = getStats(dxx,pData,[],tblVFMD);
    % X = [tblVelo.velocity,tblVelo.md];
    t2 = tblVelo(tblVelo.dmd~=0,:);
    
    X1 = [t2.velocity];
    X2 = [t2.velocity,t2.md];
    T = t2.dmd;
    
    % mdl1 = fitrnet(X1,T,'Activations','relu','LayerSizes',[44]);
    % cv1 = mdl1.crossval; rmse1 = cv1.kfoldLoss^0.5;
    % mdl2 = fitrnet(X2,T,'Activations','sigmoid','LayerSizes',[10]);
    % cv2 = mdl2.crossval; rmse2 = cv2.kfoldLoss^0.5;
    % 4;
    % mdl = fitrnet(X,T,"OptimizeHyperparameters","auto", "HyperparameterOptimizationOptions",struct("AcquisitionFunctionName","expected-improvement-plus"))
    
    err = [];
    for i = 1:length(X1)
        trainX2 = X1;
        trainX2(i) = [];
        trainY2 = T;
        trainY2(i) = [];
        mdl = fitrnet(trainX2,trainY2,'Activations','sigmoid','LayerSizes',[10]);
        pred = mdl.predict(X2(i));
        err(i) = abs(T(i) - pred);
    end
    4;