Skip to content
Snippets Groups Projects
Select Git revision
  • master
1 result

CalculateNPTSPIR.m

Blame
  • CalculateNPTSPIR.m 784 B
    % compute confidence interval for 2 class classificatoin problem
    % 
    % Witten, I. H. and E. Frank (2005). Data Mining: Practical Machine Learning Tools and Techniques 
    % pp147-149	
    
    c = 0.95 % confidence interval
    p=(1-c)/2;
    z=-1*norminv(p,0,1);
    
    f=1-282/656
    N=656
    
    %fN=[ 1-282/656,656; 1-57/656,656 ; 1,86 ; 1,72 ; .6,82;.98,82;.92 1000;.92 78 ]
    
    % fN = [.99 72;.87 86;.83 78;1 72;1 86;.92 78;1-282/656 656;1-57/656 656;.82 1000;.85 1000;.991 1000;.57 88;.97 88;.81 10000;.82 10000]
    fN = [ 1 17;1 12;.58 12;27/28 28;22/28 28]
    for i=1:size(fN,1)
        f=fN(i,1);
        N=fN(i,2);
        
        p1 = (f+ z^2/(2*N) - z*sqrt(f/N - f^2/N + z^2/(4*N^2)) ) / (1+z^2/N);
        p2 = (f+ z^2/(2*N) + z*sqrt(f/N - f^2/N + z^2/(4*N^2)) ) / (1+z^2/N);
        fprintf(1,'f=%f N=%d p1=%f p2=%f\n',f,N,p1,p2);
    end