Skip to content
Snippets Groups Projects
Commit 7b42015f authored by Eric Wait's avatar Eric Wait
Browse files

Histogram works for uint8 now

parent ada8ace1
No related branches found
No related tags found
No related merge requests found
......@@ -20,29 +20,31 @@ __global__ void cudaHistogramCreate( PixelType* values, size_t numValues, size_t
__syncthreads();
int i = threadIdx.x + blockIdx.x*blockDim.x;
int stride = blockDim.x * gridDim.x;
size_t i = threadIdx.x + blockIdx.x*blockDim.x;
size_t stride = blockDim.x * gridDim.x;
while (i < numValues)
{
size_t binNum = (size_t)MAX( 0.0, ( (double)(values[i])-minVal) / binSize );
size_t binNum = (size_t)MAX( 0.0, ( (values[i])-minVal) / binSize );
binNum = MIN(binNum, (size_t)numBins-1);
atomicAdd(&(tempHisto[binNum]), 1);
atomicAdd(&(tempHisto[binNum]), (size_t)1);
i += stride;
}
__syncthreads();
if (threadIdx.x<numBins)
atomicAdd(&(histogram[threadIdx.x]), tempHisto[threadIdx.x]);
__syncthreads();
}
__global__ void cudaNormalizeHistogram(size_t* histogram, double* normHistogram, unsigned int numBins, double devisor)
__global__ void cudaNormalizeHistogram(size_t* histogram, double* normHistogram, unsigned int numBins, double divisor)
{
int i = threadIdx.x + blockIdx.x*blockDim.x;
int stride = blockDim.x * gridDim.x;
while (i<numBins)
{
normHistogram[i] = histogram[i] / devisor;
normHistogram[i] = (double)(histogram[i]) / divisor;
i += stride;
}
}
......@@ -57,8 +59,6 @@ size_t* createHistogram(int device, unsigned int arraySize, Vec<size_t> dims, Pi
if ((size_t)props.sharedMemPerBlock<sizeof(size_t)*arraySize)
throw std::runtime_error("Too many bins to calculate on GPU with current shared memory constraints!");
size_t* hostHist = new size_t[arraySize];
size_t* deviceHist;
HANDLE_ERROR(cudaMalloc((void**)&deviceHist,sizeof(size_t)*arraySize));
HANDLE_ERROR(cudaMemset(deviceHist,0,sizeof(size_t)*arraySize));
......@@ -75,7 +75,7 @@ size_t* createHistogram(int device, unsigned int arraySize, Vec<size_t> dims, Pi
HANDLE_ERROR(cudaMalloc((void**)&deviceBuffer,sizeof(PixelType)*numValsPerChunk));
double binSize = (maxVal-minVal)/arraySize;
double binSize = ((double)maxVal-minVal)/arraySize;
for (size_t startIdx=0; startIdx<dims.product(); startIdx+=numValsPerChunk)
{
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment