Skip to content
Snippets Groups Projects
Commit 555c55de authored by Mark Winter's avatar Mark Winter
Browse files

Matlab binaries from new cmake build

parent 6ca40684
No related branches found
No related tags found
No related merge requests found
Showing
with 41 additions and 27 deletions
% CheckConfig - Get Hydra library configuration information.
% [hydraConfig] = HIP.Cuda.CheckConfig()
% Returns hydraConfig structure with configuration information.
%
function [hydraConfig] = CheckConfig()
[hydraConfig] = HIP.Cuda.HIP('CheckConfig');
end
......@@ -18,5 +18,5 @@
%
% imageOut = This will be an array of the same type and shape as the input array.
function [imageOut] = Closure(imageIn,kernel,numIterations,device)
[imageOut] = HIP.Cuda.Mex('Closure',imageIn,kernel,numIterations,device);
[imageOut] = HIP.Cuda.HIP('Closure',imageIn,kernel,numIterations,device);
end
classdef (Abstract,Sealed) Cuda
methods (Static)
[imageOut] = Closure(imageIn,kernel,numIterations,device)
[imageOut] = HighPassFilter(imageIn,sigmas,device)
[numCudaDevices,memStats] = DeviceCount()
Help(command)
[hydraConfig] = CheckConfig()
[imageOut] = IdentityFilter(imageIn,device)
[cmdInfo] = Info()
[numCudaDevices,memStats] = DeviceCount()
[imageOut] = Gaussian(imageIn,sigmas,numIterations,device)
[imageOut] = MeanFilter(imageIn,kernel,numIterations,device)
[deviceStatsArray] = DeviceStats()
[imageOut] = ElementWiseDifference(image1In,image2In,device)
[imageOut] = MultiplySum(imageIn,kernel,numIterations,device)
[imageOut] = EntropyFilter(imageIn,kernel,device)
[imageOut] = HighPassFilter(imageIn,sigmas,device)
[imageOut] = Gaussian(imageIn,sigmas,numIterations,device)
[imageOut] = Closure(imageIn,kernel,numIterations,device)
[imageOut] = StdFilter(imageIn,kernel,numIterations,device)
[minVal,maxVal] = GetMinMax(imageIn,device)
[imageOut] = WienerFilter(imageIn,kernel,noiseVariance,device)
[imageOut] = Opener(imageIn,kernel,numIterations,device)
[imageOut] = IdentityFilter(imageIn,device)
[imageOut] = MultiplySum(imageIn,kernel,numIterations,device)
[imageOut] = LoG(imageIn,sigmas,device)
[imageOut] = StdFilter(imageIn,kernel,numIterations,device)
[imageOut] = MeanFilter(imageIn,kernel,numIterations,device)
[imageOut] = MedianFilter(imageIn,kernel,numIterations,device)
[imageOut] = MinFilter(imageIn,kernel,numIterations,device)
[imageOut] = MaxFilter(imageIn,kernel,numIterations,device)
[imageOut] = NLMeans(imageIn,h,searchWindowRadius,nhoodRadius,device)
[imageOut] = Opener(imageIn,kernel,numIterations,device)
[imageOut] = Sum(imageIn,device)
[imageOut] = VarFilter(imageIn,kernel,numIterations,device)
[imageOut] = WienerFilter(imageIn,kernel,noiseVariance,device)
end
methods (Static, Access = private)
varargout = Mex(command, varargin)
varargout = HIP(command, varargin)
end
end
......@@ -5,5 +5,5 @@
% The memory structure contains the total memory on the device and the memory available for a Cuda call.
%
function [numCudaDevices,memStats] = DeviceCount()
[numCudaDevices,memStats] = HIP.Cuda.Mex('DeviceCount');
[numCudaDevices,memStats] = HIP.Cuda.HIP('DeviceCount');
end
......@@ -3,5 +3,5 @@
% DeviceStatsArray -- this is an array of structs, one struct per device.
% The struct has these fields: name, major, minor, constMem, sharedMem, totalMem, tccDriver, mpCount, threadsPerMP, warpSize, maxThreads.
function [deviceStatsArray] = DeviceStats()
[deviceStatsArray] = HIP.Cuda.Mex('DeviceStats');
[deviceStatsArray] = HIP.Cuda.HIP('DeviceStats');
end
......@@ -14,5 +14,5 @@
%
% imageOut = This will be an array of the same type and shape as the input array.
function [imageOut] = ElementWiseDifference(image1In,image2In,device)
[imageOut] = HIP.Cuda.Mex('ElementWiseDifference',image1In,image2In,device);
[imageOut] = HIP.Cuda.HIP('ElementWiseDifference',image1In,image2In,device);
end
......@@ -15,5 +15,5 @@
% imageOut = This will be an array of the same type and shape as the input array.
%
function [imageOut] = EntropyFilter(imageIn,kernel,device)
[imageOut] = HIP.Cuda.Mex('EntropyFilter',imageIn,kernel,device);
[imageOut] = HIP.Cuda.HIP('EntropyFilter',imageIn,kernel,device);
end
......@@ -18,5 +18,5 @@
% imageOut = This will be an array of the same type and shape as the input array.
%
function [imageOut] = Gaussian(imageIn,sigmas,numIterations,device)
[imageOut] = HIP.Cuda.Mex('Gaussian',imageIn,sigmas,numIterations,device);
[imageOut] = HIP.Cuda.HIP('Gaussian',imageIn,sigmas,numIterations,device);
end
......@@ -10,5 +10,5 @@
% maxValue = This is the highest value found in the array.
%
function [minVal,maxVal] = GetMinMax(imageIn,device)
[minVal,maxVal] = HIP.Cuda.Mex('GetMinMax',imageIn,device);
[minVal,maxVal] = HIP.Cuda.HIP('GetMinMax',imageIn,device);
end
No preview for this file type
No preview for this file type
% Help - Print detailed usage information for the specified command.
% HIP.Cuda.Help([command])
function Help(command)
HIP.Cuda.Mex('Help',command);
HIP.Cuda.HIP('Help',command);
end
......@@ -14,5 +14,5 @@
% imageOut = This will be an array of the same type and shape as the input array.
%
function [imageOut] = HighPassFilter(imageIn,sigmas,device)
[imageOut] = HIP.Cuda.Mex('HighPassFilter',imageIn,sigmas,device);
[imageOut] = HIP.Cuda.HIP('HighPassFilter',imageIn,sigmas,device);
end
......@@ -11,5 +11,5 @@
% imageOut = This will be an array of the same type and shape as the input array.
%
function [imageOut] = IdentityFilter(imageIn,device)
[imageOut] = HIP.Cuda.Mex('IdentityFilter',imageIn,device);
[imageOut] = HIP.Cuda.HIP('IdentityFilter',imageIn,device);
end
......@@ -7,5 +7,5 @@
% commandInfo.helpLines - Help string
%
function [cmdInfo] = Info()
[cmdInfo] = HIP.Cuda.Mex('Info');
[cmdInfo] = HIP.Cuda.HIP('Info');
end
......@@ -14,5 +14,5 @@
% imageOut = This will be an array of the same type and shape as the input array.
%
function [imageOut] = LoG(imageIn,sigmas,device)
[imageOut] = HIP.Cuda.Mex('LoG',imageIn,sigmas,device);
[imageOut] = HIP.Cuda.HIP('LoG',imageIn,sigmas,device);
end
......@@ -19,5 +19,5 @@
% imageOut = This will be an array of the same type and shape as the input array.
%
function [imageOut] = MaxFilter(imageIn,kernel,numIterations,device)
[imageOut] = HIP.Cuda.Mex('MaxFilter',imageIn,kernel,numIterations,device);
[imageOut] = HIP.Cuda.HIP('MaxFilter',imageIn,kernel,numIterations,device);
end
......@@ -19,5 +19,5 @@
% imageOut = This will be an array of the same type and shape as the input array.
%
function [imageOut] = MeanFilter(imageIn,kernel,numIterations,device)
[imageOut] = HIP.Cuda.Mex('MeanFilter',imageIn,kernel,numIterations,device);
[imageOut] = HIP.Cuda.HIP('MeanFilter',imageIn,kernel,numIterations,device);
end
......@@ -19,5 +19,5 @@
% imageOut = This will be an array of the same type and shape as the input array.
%
function [imageOut] = MedianFilter(imageIn,kernel,numIterations,device)
[imageOut] = HIP.Cuda.Mex('MedianFilter',imageIn,kernel,numIterations,device);
[imageOut] = HIP.Cuda.HIP('MedianFilter',imageIn,kernel,numIterations,device);
end
......@@ -19,5 +19,5 @@
% imageOut = This will be an array of the same type and shape as the input array.
%
function [imageOut] = MinFilter(imageIn,kernel,numIterations,device)
[imageOut] = HIP.Cuda.Mex('MinFilter',imageIn,kernel,numIterations,device);
[imageOut] = HIP.Cuda.HIP('MinFilter',imageIn,kernel,numIterations,device);
end
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment