diff --git a/src/MATLAB/ssf_vs_cn/goFigure3-C.m b/src/MATLAB/ssf_vs_cn/goFigure3C.m similarity index 73% rename from src/MATLAB/ssf_vs_cn/goFigure3-C.m rename to src/MATLAB/ssf_vs_cn/goFigure3C.m index 7fb9db14f7c002214f291ba2937837f7c828f10c..e44eb3b545e2e00da09716f154096fbbbd6434ea 100644 --- a/src/MATLAB/ssf_vs_cn/goFigure3-C.m +++ b/src/MATLAB/ssf_vs_cn/goFigure3C.m @@ -1,5 +1,6 @@ cnRatios = zeros(9,100); +ccnRatios = zeros(9,100); ssfVals = zeros(9,100); % i = 9; @@ -8,11 +9,11 @@ for i = 1:10 for j = 1:100 % [cnRatio,ssfVal] = ssfPhantom(i/10); - [cnRatio,ssfVal] = ssfPhantom((i-1)/10); + [cnRatio,ccnRatio, ssfVal] = ssfPhantom((i-1)/10); cnRatios(i,j) = cnRatio; ssfVals(i,j) = ssfVal; - + ccnRatios(i,j) = ccnRatio; end end @@ -25,6 +26,9 @@ sc = std(cnRatios,0,2); ms = mean(ssfVals,2); ss = std(ssfVals,0,2); +mccn = mean(ccnRatios,2); +sccn = std(ccnRatios,0,2); + msNorm = mean(ssfVals,2)./ssfRefVal; ssNorm = std(ssfVals./ssfRefVal,0,2); @@ -33,7 +37,8 @@ figure; plot([1:-.1:.1],'color','y','LineWidth',4,'linestyle','-'); hold on; errorbar(mc,sc/(2*sqrt(size(ssfVals,2))),'color','r') -errorbar(ms,ss/(2*sqrt(size(ssfVals,2))),'color',[0.4660 0.6740 0.1880]) +errorbar(mccn,sccn/(2*sqrt(size(ssfVals,2))),'color',[0.4660 0.6740 0.1880]) +errorbar(ms,ss/(2*sqrt(size(ssfVals,2))),'color','m') % errorbar(msNorm,ssNorm/(2*sqrt(size(ssfVals,2))),'-ro','color','k','markersize',8,'markerfacecolor','r'); errorbar(msNorm,ssNorm/(2*sqrt(size(ssfVals,2))),'color','k'); @@ -49,7 +54,8 @@ ylabel('Cell signal activation') % set(gca, 'YScale', 'log') % legend('GT','Nuclear/Cyto Ratio','LoG','SSF') -legend('GT','CN_{ratio}','LoG','SSF') +% legend('GT','CN_{ratio}','LoG','SSF','\frac{C}{C+N}') +legend('GT','$\frac{C}{N}$','$\frac{C}{C+N}$','LoG','SSF','Interpreter','latex') set(gcf,'color','white') ylim([0 5]) @@ -57,7 +63,7 @@ f = getframe(gcf); cap = frame2im(f); outName = 'phantomLinear.tif'; -outRoot = 'F:\leverjs\agne\images\ssfFigures'; +outRoot = './'; outFile = fullfile(outRoot,outName); imwrite(cap,outFile); diff --git a/src/MATLAB/ssf_vs_cn/phantomLinear.tif b/src/MATLAB/ssf_vs_cn/phantomLinear.tif new file mode 100644 index 0000000000000000000000000000000000000000..e53eae496b03a35d5f5daf4f62c6e3505acb5285 Binary files /dev/null and b/src/MATLAB/ssf_vs_cn/phantomLinear.tif differ diff --git a/src/MATLAB/phantomSSF/ssfPhantom.m b/src/MATLAB/ssf_vs_cn/ssfPhantom.m similarity index 86% rename from src/MATLAB/phantomSSF/ssfPhantom.m rename to src/MATLAB/ssf_vs_cn/ssfPhantom.m index 41232694da699b5ef33b20b98abd941d1f3e0e29..fbddbe8c8d7f0f1dc001393b30a8779167a4ad67 100644 --- a/src/MATLAB/phantomSSF/ssfPhantom.m +++ b/src/MATLAB/ssf_vs_cn/ssfPhantom.m @@ -1,4 +1,4 @@ -function [cnRatio,ssfValue] = ssfPhantom(density) +function [cnRatio,ccnRatio, ssfValue] = ssfPhantom(density) % set width/length of the image wl = 200; @@ -45,6 +45,7 @@ imNoiseLoG = HIP.LoG(imNoise(:,:,1),logRadius,targetDevice); % cnRatio = mean(imNoise(idxNuclear))/mean(imNoise(idxCyto)); cnRatio = mean(imNoise(idxCyto))/mean(imNoise(idxNuclear)); +ccnRatio = mean(imNoise(idxCyto)) / (mean(imNoise(idxCyto))+mean(imNoise(idxNuclear))); ssfValue = max(imNoiseLoG(:)); end \ No newline at end of file