diff --git a/manuscript/RSF.pdf b/manuscript/RSF.pdf index cc15f3237739144d243c67569d15bc076b3c1751..2893faf7b86a8006747abd276771f45114bbb2e2 100644 Binary files a/manuscript/RSF.pdf and b/manuscript/RSF.pdf differ diff --git a/manuscript/RSF.tex b/manuscript/RSF.tex index 181c4e351c9dacba6acacb61c765388b4eb79788..2b22a3ac65ab8e206dc87e2b53ecda6da4a6a358 100644 --- a/manuscript/RSF.tex +++ b/manuscript/RSF.tex @@ -93,6 +93,12 @@ tl;dr RKHS make subsequent optimization learning easier to implement and more li [Ronald?] -- ~ 4 paragraphs summarize impact of retinal OCT (Glaucoma, occulomics, etc.), background on VFMD, background on metadata, imaging physics. Key recent deep learning papers [Schuman et al.]. Other learning approaches [NNMF et al.]. +------- + +Optical coherence tomography (OCT) is a non-invasive diagnostic imaging tool which employs principles of optical interferometry to obtain cross-sectional images from biological tissue \cite[]{huang1991}. + +------- + Key observation -- inherent anisotropy of imaging implements Frangi-like plate filter along the high resolution axis. \subsection{Kolmogorov complexity and the normalized information distance (NID)} diff --git a/manuscript/rsf.bib b/manuscript/rsf.bib index 1fdcd623b2d496385713f9ba0615569b7216e7bd..c51333693aa1c5bedf497987ec001a33d487ce70 100644 --- a/manuscript/rsf.bib +++ b/manuscript/rsf.bib @@ -250,3 +250,13 @@ type = {Conference Proceedings} } +@article{huang1991, + title={Optical coherence tomography}, + author={Huang, David and Swanson, Eric A and Lin, Charles P and Schuman, Joel S and Stinson, William G and Chang, Warren and Hee, Michael R and Flotte, Thomas and Gregory, Kent and Puliafito, Carmen A}, + journal={Science}, + volume={254}, + number={5035}, + pages={1178--1181}, + year={1991}, + doi={10.1126/science.1957169} +}