diff --git a/manuscript/RSF.tex b/manuscript/RSF.tex index 898804085d3dc741d3b65306ee92c51a809a3e43..0b5e4405a7a0981903993fdb2f3d84caf66ac15a 100644 --- a/manuscript/RSF.tex +++ b/manuscript/RSF.tex @@ -89,6 +89,7 @@ tl;dr RKHS make subsequent optimization learning easier to implement and more likely to generalize better [primer]. + \subsection{Optical Coherence Tomography of the Retina} [Ronald?] -- ~ 4 paragraphs summarize impact of retinal OCT (Glaucoma, occulomics, etc.), background on VFMD, background on metadata, imaging physics. Key recent deep learning papers [Schuman et al.]. Other learning approaches [NNMF et al.]. @@ -101,16 +102,20 @@ Optical coherence tomography (OCT) is a non-invasive diagnostic imaging tool whi Key observation -- inherent anisotropy of imaging implements Frangi-like plate filter along the high resolution axis. + \subsection{Kolmogorov complexity and the normalized information distance (NID)} FLIF \cite{FLIF} \dots +\subsection{Semi-supervised spectral learning} +\subsection{multi-scale image structure enhancement and positive semi-definite functions} +Frangi's 3-D vesselness filter was a big advance in our ability to extract biological structure from low-SNR images. +\subsection{Kolmogorov structure function vs. } +$h_{Kolmogorov}$ [Vereschegin and Vitanyi] \emph{vs.} $h_{Frangi}$ +\subsection{Quantization} -\subsection{Semi-supervised spectral learning} -\subsection{Kolmogorov structure function vs. multi-scale vessel ehancing image filters} -$H_{Kolmogorov}$ [Vereschegin and Vitanyi] \emph{vs.} $H_{Frangi}$ -\section{The retinal structure function} +\input{algorithmicStructure.tex} \section{Validating the NCD vs. prediction against functional changes of the visual field } @@ -132,14 +137,18 @@ RKHS combinations: macula + ONH simultaneously, multi-resolution by channel vs. \section{Acknowledgements} +\section{Hardware, software and data availability} +A sample dataset of labeled OCT imaging data is being made available concurrent with this manuscript. The images and metadata can be explored using the LEVERSC [ref] web visualization toolkit: https://todo, or direct download at ??? -\section{Software and data availability} All of the software tools used are available free and open source, see \url{https://git-bioimage.coe.drexel.edu/opensource/rsf}. The image data together with segmentation and tracking results can be viewed interactively at \url{https://leverjs.net/ssfCluster}. The LEVERSC 4-D WEBGL viewer \cite[]{Cohen2022} renders 3-D kymographs and images, and the web API also supports downloading metadata and results directly. + +The image processing pipeline described here requires dedicated hardware. Structure filters are GPU intensive, FLIF compression is CPU intensive. The reference hardware platform is 128 AMD X-???, 3 NVIDIA A6000 GPU, 2TB RAM, 1PB HDD. + \label{Sect.Software} \printbibliography - +BOOM! \newpage \begin{figure*}[!ht]