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II. INTRODUCTION
A. Why metric embedding?

tl;dr RKHS make subsequent optimization learning easier to implement and more likely to

generalize better [primer].

B. Optical Coherence Tomography of the Retina

The last few decades have ushered in revolutionary advancements in medical imaging which
have helped elucidate relationships between biological structures and physiological function in
health and disease. Combining computer-aided diagnosis with imaging data further augments
physicians’ ability to make higher precision clinical decisions. Perhaps no better example of
this could be made than with the impact that optical coherence tomography (OCT) has had on
eye care. OCT is a non-invasive diagnostic imaging tool which employs principles of optical
interferometry using a low-coherence light source to obtain cross-sectional digitally reconstructed

images of biological tissue [1]. Often described as an optical analog to ultrasound, OCT images
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are generated from detection of electrical field produced from the echoed tissue and reference
signals [2]. OCT datasets are comprised of multiple A-scans acquired in rapid succession to form
cross-sectional images called B-Scans. These B-scans can be rapidly acuired in a raster pattern
to obtain a volumetric image of the subject tissue. Current generations of spectral domain (SD)
OCT have an axial resolution of 5-8 microns with a lateral resolution of 6-20 microns and a
scanning rate of 100,000 A-scans per second, making them ideal for Capture of 3-D volumetric
data in vivo. [3].

Although predominantly used in clinical eye practice, OCT spans beyond ophthalmology. OCT
has clinical applications in cardiology, otology, dermatology, and dentistry [4]. OCT’s ability to
penetrate up to 3mm of tissue and produce high resolution images have provided use cases in
diagnosing myocardial infarction with non-obtrusive coronary arteries [5], facilitating cochlear
implants surgery [6], diagnosing basal cell carcinoma [7], and even dental cavity detection [8].
More recently, the sub-field of ophthalmic imaging known as Oculomics has shown the capability
of using OCT to make prognostications of non-ocular systemic disorders like cardiovascular [9]
and neurological disease [10, 11], as well as improved estimation of phenotypic age for predicting
mortality [12].

Mainly, this ability to safely and quickly acquire ocular images in a longitudinal and
reproducible manner has revolutionized the way clinicians diagnose and manage blindness
causing diseases such as glaucoma. Glaucoma is the global leader of irreversible blindness, with
some projections indicating that the number of affected individuals could rise to 112 million
by 2040 due to population aging [13]. Glaucoma, characterized by persistent microstructural
deterioriation of the optic nerve and retina, is often asymptomatic until the moderate to
severe stages of disease. Therefore, OCT plays a critical role in mitigating disease through
early detection of these microscopic structural changes. However, OCT alone is insufficient in
determining disease severity. Glaucoma standard of care involves ophthalmic imaging with OCT
in conjunction with functional assessment of the patient’s visual field (VF) through standardized
automated perimetry [14]. One of the prominent ways to categorize disease severity and visual
field defect is through visual field mean deviation (VFMD), which is a numerical estimation of
light in decibels (dB) that an individual eye can perceive [15]. It is important to note, however,
that structural changes in the retina are not linearly correlated with VFMD throughout the
disease spectrum. Cross-sectional studies have demonstrated that there is little to no correlation

between mean RNFL and VFMD until significant RNFL damage has occurred, at which point
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statistically significant associations with VFMD can be observed [16]. Therefore, improving
early detection of structural changes through ocular imaging are mission critical in the pursuit
of vision preservation.

Artificial intelligence (Al) applications using deep learners (DL) to detect, diagnose and predict
disease progression have a potentially enormous impact on public health [17]. The most common
approaches look to classify glaucoma based on clinically accepted structural features such as the
retinal nerve fiber layer (RNFL), ganglion cell inner plexiform layer (GCIPL) and optic nerve
head (ONH) [18-22]. Furthermore, incorporating features such as ganglion cell complex (GCC)
thickness, ONH macrostructure, and RNFL reflectance maps into DL model training have been
shown to significantly improve diagnostic accuracy [23]. Although there is no consensus on
the exact clinical classification of glaucoma, the structure function relationship between OCT
and VF are critical in understanding disease severity and progression. This reliability on VF
for diagnosis is challenging because the VF test itself is challenging for patients. The test,
which can last between 4-8 minutes per eye, requires patients to sit still and fixate on singular
point without moving and click a button anytime a point of light is perceived in their field of
vision. Test difficulty, combined with an older patient demographic, often makes VF test results
more variable than OCT, which takes mere seconds to perform. Therefore, considerable efforts
have been made towards predicting VF outcomes based on OCT. Previous studies have shown
the ability to derive the spatial relationship between structure and function using OCT and VF
point-by-point estimation [14] based on stochastic optimization DL models [24].

Unsupervised feature agnostic approaches using OCT have shown promise in predicting
disease progression measured by VFE Chen et al. [25], describe a 3D based ResNetl8
Convolutional neural network (CNN) capable of inferring pointwise VF sensitivities directly
from segmentation-free OCT 3D volumes. Similarly, attention-guided network approaches have
demonstrated improved glaucoma detection by taking OCT volumes and computing dual 3-
D gradient class activation heatmaps to predict the Visual Field Index (VFI) estimation [26].
DL approaches using OCT volumes from glaucoma subjects have identified 14 non-clinically
defined surface shape patterns near the ONH which are capable of predicting specific VFMD
loss rate with a best coefficient of determination of r? = 0.37 [27]. These clinically agnostic DL
approaches using OCT volumes have demonstrated the ability to identify previously undiscovered
biomarkers for improving the prediction of glaucomatous functional defects, but, perhaps due to

the insufficient confidence indices or inability to explicitly and metrically define the relationships,
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remain limited to research applications.
Key observation — inherent anisotropy of imaging implements Frangi-like plate filter along

the high resolution axis.

C. Kolmogorov complexity and the normalized information distance (NID)

FLIF [28] ...

D. Semi-supervised spectral learning
E. Kolmogorov structure function vs. multi-scale vessel ehancing image filters

H kg otmogorov [ Vereschegin and Vitanyi] vs. Hprangi

I[II. THE RETINAL STRUCTURE FUNCTION

IV. VALIDATING THE NCD VS. PREDICTION AGAINST FUNCTIONAL CHANGES OF THE

VISUAL FIELD

Idea : NCD(OCT,,0CTs) to predict |VFMD, — V FMDs|

open source code in progress (?). open source image data? what can we release? maybe a
small sample, e.g. ~ 100 stacks?

Deep learning state of the art in estimating VFMD from retinal OCT achieves RMSE
< 2.5. We pose the question differently, looking instead to predict |AVFMD| given the
normalized compression distance between image pairs. Training a single-layer single-node
regression network with sigmoid activation yields cross-validation RMSE ~ 0.8. A second single-
layer 10-node regression network with input including one of the two VFMD values (from either

image date) achieves cross-validation RMSE ~ 0.7.

V. FUTURE WORK

Anisotropic denoising on the GPU with HIP.
Clustering by compression: e.g. M vs. F, OD vs. OS, zip code?
RKHS combinations: macula + ONH simultaneously, multi-resolution by channel vs. dimen-

sionality reduction, metadata w/ bzip,...?
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VI. ACKNOWLEDGEMENTS
VII. SOFTWARE AND DATA AVAILABILITY

All of the software tools used are available free and open source, see https://git-bioimage.
coe.drexel.edu/opensource/rsf. The image data together with segmentation and tracking results
can be viewed interactively at https://leverjs.net/ssfCluster. The LEVERSC 4-D WEBGL viewer
[29] renders 3-D kymographs and images, and the web API also supports downloading metadata

and results directly.
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Fig. 1: The retinal structure function (RSF) computes at each image voxel how ‘plate-like’
is the 3-D intensity configuration of the surrounding voxels. The input image (a, single slice
shown) is denoised using non-local means (c,d), and then processed with a Laplacian of Gaussian
(LoG) convolution kernel (b, single slice shown). The LoG positive response (red) represents dark
structure against a bright background, the negative response (green) represents bright structure
against a dark background. The 2-D regional maxima weighted by the LoG, with the interior
of each dot scaled by filter response, are shown for illustration (e). The 3-D regional maxima
weighted by the LoG (f), are the representation used as input to the normalized compression
distance (NCD). Top row (a-d) shows optic nerve OCT using LoG of size [0.5, 10, 10] voxels,
the bottom row (e-h, same captions as a-d) is macula OCT with LoG of size [0.35,7,7] voxels.
The goal of the RSF is to extract a local measure of the voxel structure so the NCD best captures
patterns of similarity between image pairs. See also ONH movie and macula movie. TODO

brighten macula movie...
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Fig. 2: Inherent resolution anisotropy in retinal OCT enables novel denoising approaches.
The input image (a, single slice shown) is denoised using a 3-D non-local means (b) with an
isotropic pattern ([3, 3, 3] voxels) and search radius ([25, 25, 25] voxels). With a "plate-enhancing’
anisotropy in both pattern ([1,5,5])) and search ([5,50,50]), the orientation of the smoothing
direction can be clearly seen along the vertical axis, while along the horizontal or low-res
direction (c). The optimal image processing pipeline will be chosen to maximize the retinal
structure function, as measured from characteristics of both the embedded and the kernel space.
TODO - add arrows indicating axes...Good figure for a grant, not ready for manuscript?
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Fig. 3: Comparison to Iowa segmentation. The lowa segmentation is generally gorgeous and
does a great job at capturing the 2-D structure. OCT Explorer fabulous UI! but the algorithms do
not appear to be open-source? Need to confirm. Loan — re-render the ground truth panel (let’s
call this the ’lowa reference algorithm’ [Ronald — refs here]) over the denoised background
maybe?
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