diff --git a/src/MATLAB/+HIP/@Cuda/Closure.m b/src/MATLAB/+HIP/@Cuda/Closure.m
index de14b6d2663369f5471e7eefaa1706cb737dbca5..7c40dbb3824ccf17d1cfd84705c550373b39903d 100644
--- a/src/MATLAB/+HIP/@Cuda/Closure.m
+++ b/src/MATLAB/+HIP/@Cuda/Closure.m
@@ -1,5 +1,5 @@
-% Closure - This kernel will dilate follow by an erosion.
-%    arrayOut = HIP.Cuda.Closure(arrayIn,kernel,[numIterations],[device])
+% Closure - This kernel will apply a dilation followed by an erosion.
+%    [imageOut] = HIP.Cuda.Closure(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,6 +17,6 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
-function arrayOut = Closure(arrayIn,kernel,numIterations,device)
-    [arrayOut] = HIP.Cuda.Mex('Closure',arrayIn,kernel,numIterations,device);
+function [imageOut] = Closure(imageIn,kernel,numIterations,device)
+    [imageOut] = HIP.Cuda.Mex('Closure',imageIn,kernel,numIterations,device);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/Cuda.m b/src/MATLAB/+HIP/@Cuda/Cuda.m
index 6d01261b3811d9d8e0c752cb9c1bde4d76a6ad26..b947a013950a8be27fb5504382161f5410a5bf0f 100644
--- a/src/MATLAB/+HIP/@Cuda/Cuda.m
+++ b/src/MATLAB/+HIP/@Cuda/Cuda.m
@@ -1,27 +1,27 @@
 classdef (Abstract,Sealed) Cuda
 methods (Static)
-    commandInfo = Info()
+    [imageOut] = Closure(imageIn,kernel,numIterations,device)
+    [imageOut] = HighPassFilter(imageIn,sigmas,device)
+    [numCudaDevices,memStats] = DeviceCount()
     Help(command)
-    [numCudaDevices,memoryStats] = DeviceCount()
-    deviceStatsArray = DeviceStats()
-    arrayOut = Closure(arrayIn,kernel,numIterations,device)
-    arrayOut = ElementWiseDifference(array1In,array2In,device)
-    arrayOut = EntropyFilter(arrayIn,kernel,device)
-    arrayOut = Gaussian(arrayIn,sigmas,numIterations,device)
-    [minValue,maxValue] = GetMinMax(arrayIn,device)
-    arrayOut = HighPassFilter(arrayIn,sigmas,device)
-    arrayOut = IdentityFilter(arrayIn,device)
-    arrayOut = LoG(arrayIn,sigmas,device)
-    arrayOut = MaxFilter(arrayIn,kernel,numIterations,device)
-    arrayOut = MeanFilter(arrayIn,kernel,numIterations,device)
-    arrayOut = MedianFilter(arrayIn,kernel,numIterations,device)
-    arrayOut = MinFilter(arrayIn,kernel,numIterations,device)
-    arrayOut = MultiplySum(arrayIn,kernel,numIterations,device)
-    arrayOut = Opener(arrayIn,kernel,numIterations,device)
-    arrayOut = StdFilter(arrayIn,kernel,numIterations,device)
-    valueOut = Sum(arrayIn,device)
-    arrayOut = VarFilter(arrayIn,kernel,numIterations,device)
-    arrayOut = WienerFilter(arrayIn,kernel,noiseVariance,device)
+    [minVal,maxVal] = GetMinMax(imageIn,device)
+    [cmdInfo] = Info()
+    [imageOut] = Gaussian(imageIn,sigmas,numIterations,device)
+    [imageOut] = MeanFilter(imageIn,kernel,numIterations,device)
+    [deviceStatsArray] = DeviceStats()
+    [imageOut] = ElementWiseDifference(image1In,image2In,device)
+    [imageOut] = MultiplySum(imageIn,kernel,numIterations,device)
+    [imageOut] = EntropyFilter(imageIn,kernel,device)
+    [imageOut] = StdFilter(imageIn,kernel,numIterations,device)
+    [imageOut] = IdentityFilter(imageIn,device)
+    [imageOut] = LoG(imageIn,sigmas,device)
+    [imageOut] = MedianFilter(imageIn,kernel,numIterations,device)
+    [imageOut] = MinFilter(imageIn,kernel,numIterations,device)
+    [imageOut] = MaxFilter(imageIn,kernel,numIterations,device)
+    [imageOut] = Opener(imageIn,kernel,numIterations,device)
+    [imageOut] = Sum(imageIn,device)
+    [imageOut] = VarFilter(imageIn,kernel,numIterations,device)
+    [imageOut] = WienerFilter(imageIn,kernel,noiseVariance,device)
 end
 methods (Static, Access = private)
     varargout = Mex(command, varargin)
diff --git a/src/MATLAB/+HIP/@Cuda/DeviceCount.m b/src/MATLAB/+HIP/@Cuda/DeviceCount.m
index e98fcdda17e5c21eb3ac016a6b7a61260b6075b0..26b0ace7837047c34f5481e9c96df3bd3bce3234 100644
--- a/src/MATLAB/+HIP/@Cuda/DeviceCount.m
+++ b/src/MATLAB/+HIP/@Cuda/DeviceCount.m
@@ -1,8 +1,9 @@
 % DeviceCount - This will return the number of Cuda devices available, and their memory.
-%    [numCudaDevices,memoryStats] = HIP.Cuda.DeviceCount()
+%    [numCudaDevices,memStats] = HIP.Cuda.DeviceCount()
 %    	NumCudaDevices -- this is the number of Cuda devices available.
 %    	MemoryStats -- this is an array of structures where each entry corresponds to a Cuda device.
 %    		The memory structure contains the total memory on the device and the memory available for a Cuda call.
-function [numCudaDevices,memoryStats] = DeviceCount()
-    [numCudaDevices,memoryStats] = HIP.Cuda.Mex('DeviceCount');
+%    
+function [numCudaDevices,memStats] = DeviceCount()
+    [numCudaDevices,memStats] = HIP.Cuda.Mex('DeviceCount');
 end
diff --git a/src/MATLAB/+HIP/@Cuda/DeviceStats.m b/src/MATLAB/+HIP/@Cuda/DeviceStats.m
index 72369ad9358f9d710a37045db66bac6bcdbdcc59..62710ca62b0f4e3eb1bf15a57c1fe3bddcd63165 100644
--- a/src/MATLAB/+HIP/@Cuda/DeviceStats.m
+++ b/src/MATLAB/+HIP/@Cuda/DeviceStats.m
@@ -1,7 +1,7 @@
 % DeviceStats - This will return the statistics of each Cuda capable device installed.
-%    deviceStatsArray = HIP.Cuda.DeviceStats()
+%    [deviceStatsArray] = HIP.Cuda.DeviceStats()
 %    	DeviceStatsArray -- this is an array of structs, one struct per device.
 %    		The struct has these fields: name, major, minor, constMem, sharedMem, totalMem, tccDriver, mpCount, threadsPerMP, warpSize, maxThreads.
-function deviceStatsArray = DeviceStats()
+function [deviceStatsArray] = DeviceStats()
     [deviceStatsArray] = HIP.Cuda.Mex('DeviceStats');
 end
diff --git a/src/MATLAB/+HIP/@Cuda/ElementWiseDifference.m b/src/MATLAB/+HIP/@Cuda/ElementWiseDifference.m
index 3a79d97b6ef012238f28de4cf565dbcbc8557df3..52bbcb81d84254a7ef20ae488aa147583fe522f2 100644
--- a/src/MATLAB/+HIP/@Cuda/ElementWiseDifference.m
+++ b/src/MATLAB/+HIP/@Cuda/ElementWiseDifference.m
@@ -1,5 +1,5 @@
 % ElementWiseDifference - This subtracts the second array from the first, element by element (A-B).
-%    arrayOut = HIP.Cuda.ElementWiseDifference(array1In,array2In,[device])
+%    [imageOut] = HIP.Cuda.ElementWiseDifference(image1In,image2In,[device])
 %    	image1In = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -13,6 +13,6 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
-function arrayOut = ElementWiseDifference(array1In,array2In,device)
-    [arrayOut] = HIP.Cuda.Mex('ElementWiseDifference',array1In,array2In,device);
+function [imageOut] = ElementWiseDifference(image1In,image2In,device)
+    [imageOut] = HIP.Cuda.Mex('ElementWiseDifference',image1In,image2In,device);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/EntropyFilter.m b/src/MATLAB/+HIP/@Cuda/EntropyFilter.m
index 8e3ccda8c2ec174769e264b5cc77734eed73cd8d..e3d31ecb37f89b2132655ad11a8569557a93ab88 100644
--- a/src/MATLAB/+HIP/@Cuda/EntropyFilter.m
+++ b/src/MATLAB/+HIP/@Cuda/EntropyFilter.m
@@ -1,5 +1,5 @@
 % EntropyFilter - This calculates the entropy within the neighborhood given by the kernel.
-%    arrayOut = HIP.Cuda.EntropyFilter(arrayIn,kernel,[device])
+%    [imageOut] = HIP.Cuda.EntropyFilter(imageIn,kernel,[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -13,6 +13,7 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
-function arrayOut = EntropyFilter(arrayIn,kernel,device)
-    [arrayOut] = HIP.Cuda.Mex('EntropyFilter',arrayIn,kernel,device);
+%    
+function [imageOut] = EntropyFilter(imageIn,kernel,device)
+    [imageOut] = HIP.Cuda.Mex('EntropyFilter',imageIn,kernel,device);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/Gaussian.m b/src/MATLAB/+HIP/@Cuda/Gaussian.m
index e4cb71f50a7f134f24b9d6c1be0935a5231cce91..92e6fa345fc973e5270531a41ae4c515f638e656 100644
--- a/src/MATLAB/+HIP/@Cuda/Gaussian.m
+++ b/src/MATLAB/+HIP/@Cuda/Gaussian.m
@@ -1,5 +1,5 @@
 % Gaussian - Gaussian smoothing.
-%    arrayOut = HIP.Cuda.Gaussian(arrayIn,sigmas,[numIterations],[device])
+%    [imageOut] = HIP.Cuda.Gaussian(imageIn,sigmas,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -16,6 +16,7 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
-function arrayOut = Gaussian(arrayIn,sigmas,numIterations,device)
-    [arrayOut] = HIP.Cuda.Mex('Gaussian',arrayIn,sigmas,numIterations,device);
+%    
+function [imageOut] = Gaussian(imageIn,sigmas,numIterations,device)
+    [imageOut] = HIP.Cuda.Mex('Gaussian',imageIn,sigmas,numIterations,device);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/GetMinMax.m b/src/MATLAB/+HIP/@Cuda/GetMinMax.m
index c5c12c440f9a29153b6ede5f211a9520d51b6675..b06dd63e9335b523b9de610e630c0496feb844c6 100644
--- a/src/MATLAB/+HIP/@Cuda/GetMinMax.m
+++ b/src/MATLAB/+HIP/@Cuda/GetMinMax.m
@@ -1,5 +1,5 @@
 % GetMinMax - This function finds the lowest and highest value in the array that is passed in.
-%    [minValue,maxValue] = HIP.Cuda.GetMinMax(arrayIn,[device])
+%    [minVal,maxVal] = HIP.Cuda.GetMinMax(imageIn,[device])
 %    	imageIn = This is a one to five dimensional array.
 %    
 %    	device (optional) = Use this if you have multiple devices and want to select one explicitly.
@@ -8,6 +8,7 @@
 %    
 %    	minValue = This is the lowest value found in the array.
 %    	maxValue = This is the highest value found in the array.
-function [minValue,maxValue] = GetMinMax(arrayIn,device)
-    [minValue,maxValue] = HIP.Cuda.Mex('GetMinMax',arrayIn,device);
+%    
+function [minVal,maxVal] = GetMinMax(imageIn,device)
+    [minVal,maxVal] = HIP.Cuda.Mex('GetMinMax',imageIn,device);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/Help.m b/src/MATLAB/+HIP/@Cuda/Help.m
index a446a6fcbd5fc086a23788a4fe2d317d6063e58f..2daacbdbdf7078392a015621393baa66c35b8ad1 100644
--- a/src/MATLAB/+HIP/@Cuda/Help.m
+++ b/src/MATLAB/+HIP/@Cuda/Help.m
@@ -1,6 +1,5 @@
-% Help - Help on a specified command.
-%    HIP.Cuda.Help(command)
-%    Print detailed usage information for the specified command.
+% Help - Print detailed usage information for the specified command.
+%    HIP.Cuda.Help([command])
 function Help(command)
     HIP.Cuda.Mex('Help',command);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/HighPassFilter.m b/src/MATLAB/+HIP/@Cuda/HighPassFilter.m
index cb5b62e58693b1853777d1f1dfb9a34c37179b0d..e795bae55cf5da9c69650d235e6969ada24e9665 100644
--- a/src/MATLAB/+HIP/@Cuda/HighPassFilter.m
+++ b/src/MATLAB/+HIP/@Cuda/HighPassFilter.m
@@ -1,5 +1,5 @@
 % HighPassFilter - Filters out low frequency by subtracting a Gaussian blurred version of the input based on the sigmas provided.
-%    arrayOut = HIP.Cuda.HighPassFilter(arrayIn,sigmas,[device])
+%    [imageOut] = HIP.Cuda.HighPassFilter(imageIn,sigmas,[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -12,6 +12,7 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
-function arrayOut = HighPassFilter(arrayIn,sigmas,device)
-    [arrayOut] = HIP.Cuda.Mex('HighPassFilter',arrayIn,sigmas,device);
+%    
+function [imageOut] = HighPassFilter(imageIn,sigmas,device)
+    [imageOut] = HIP.Cuda.Mex('HighPassFilter',imageIn,sigmas,device);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/IdentityFilter.m b/src/MATLAB/+HIP/@Cuda/IdentityFilter.m
index 0ad9bcf24efa76e94592c3dff8684e60fa403c82..79955722436954c0a0f445429df263dc5be9c858 100644
--- a/src/MATLAB/+HIP/@Cuda/IdentityFilter.m
+++ b/src/MATLAB/+HIP/@Cuda/IdentityFilter.m
@@ -1,5 +1,5 @@
-% IdentityFilter - Identity Filter for testing. Copies image data to GPU memory and back into output image
-%    arrayOut = HIP.Cuda.IdentityFilter(arrayIn,[device])
+% IdentityFilter - Identity Filter for testing. Copies image data to GPU memory and back into output image.
+%    [imageOut] = HIP.Cuda.IdentityFilter(imageIn,[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -9,6 +9,7 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
-function arrayOut = IdentityFilter(arrayIn,device)
-    [arrayOut] = HIP.Cuda.Mex('IdentityFilter',arrayIn,device);
+%    
+function [imageOut] = IdentityFilter(imageIn,device)
+    [imageOut] = HIP.Cuda.Mex('IdentityFilter',imageIn,device);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/Info.m b/src/MATLAB/+HIP/@Cuda/Info.m
index 1ab3948bbdca2f523b54660213c490121102dd3b..a59edcf51c2f1e0a19c44679bb331fbe3b46d1b2 100644
--- a/src/MATLAB/+HIP/@Cuda/Info.m
+++ b/src/MATLAB/+HIP/@Cuda/Info.m
@@ -1,10 +1,11 @@
 % Info - Get information on all available mex commands.
-%    commandInfo = HIP.Cuda.Info()
+%    [cmdInfo] = HIP.Cuda.Info()
 %    Returns commandInfo structure array containing information on all mex commands.
 %       commandInfo.command - Command string
-%       commandInfo.outArgs - Cell array of output arguments
-%       commandInfo.inArgs - Cell array of input arguments
-%       commandInfo.helpLines - Cell array of input arguments
-function commandInfo = Info()
-    [commandInfo] = HIP.Cuda.Mex('Info');
+%       commandInfo.outArgs - Comma-delimited string list of output arguments
+%       commandInfo.inArgs - Comma-delimited string list of input arguments
+%       commandInfo.helpLines - Help string
+%    
+function [cmdInfo] = Info()
+    [cmdInfo] = HIP.Cuda.Mex('Info');
 end
diff --git a/src/MATLAB/+HIP/@Cuda/LoG.m b/src/MATLAB/+HIP/@Cuda/LoG.m
index e6d5bb440bd4261e7b783e916aa4fe481d46c684..e0dff78fc6ad990db400b2dd06ae3af6657914f3 100644
--- a/src/MATLAB/+HIP/@Cuda/LoG.m
+++ b/src/MATLAB/+HIP/@Cuda/LoG.m
@@ -1,5 +1,5 @@
 % LoG - Apply a Lapplacian of Gaussian filter with the given sigmas.
-%    arrayOut = HIP.Cuda.LoG(arrayIn,sigmas,[device])
+%    [imageOut] = HIP.Cuda.LoG(imageIn,sigmas,[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -12,6 +12,7 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
-function arrayOut = LoG(arrayIn,sigmas,device)
-    [arrayOut] = HIP.Cuda.Mex('LoG',arrayIn,sigmas,device);
+%    
+function [imageOut] = LoG(imageIn,sigmas,device)
+    [imageOut] = HIP.Cuda.Mex('LoG',imageIn,sigmas,device);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/MaxFilter.m b/src/MATLAB/+HIP/@Cuda/MaxFilter.m
index 2715cc59ad78fe94495cb59bf44eb8e840ea4ddf..077a6c3b65c89d96d2ec5a39842af7edf7290373 100644
--- a/src/MATLAB/+HIP/@Cuda/MaxFilter.m
+++ b/src/MATLAB/+HIP/@Cuda/MaxFilter.m
@@ -1,5 +1,5 @@
 % MaxFilter - This will set each pixel/voxel to the max value of the neighborhood defined by the given kernel.
-%    arrayOut = HIP.Cuda.MaxFilter(arrayIn,kernel,[numIterations],[device])
+%    [imageOut] = HIP.Cuda.MaxFilter(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,6 +17,7 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
-function arrayOut = MaxFilter(arrayIn,kernel,numIterations,device)
-    [arrayOut] = HIP.Cuda.Mex('MaxFilter',arrayIn,kernel,numIterations,device);
+%    
+function [imageOut] = MaxFilter(imageIn,kernel,numIterations,device)
+    [imageOut] = HIP.Cuda.Mex('MaxFilter',imageIn,kernel,numIterations,device);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/MeanFilter.m b/src/MATLAB/+HIP/@Cuda/MeanFilter.m
index 95ce167a0330379bca8ca8bb151b86efb172513b..a3a00ee58aaa4d71cb038d869aabcb33cdbea5bb 100644
--- a/src/MATLAB/+HIP/@Cuda/MeanFilter.m
+++ b/src/MATLAB/+HIP/@Cuda/MeanFilter.m
@@ -1,5 +1,5 @@
 % MeanFilter - This will take the mean of the given neighborhood.
-%    arrayOut = HIP.Cuda.MeanFilter(arrayIn,kernel,[numIterations],[device])
+%    [imageOut] = HIP.Cuda.MeanFilter(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,6 +17,7 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
-function arrayOut = MeanFilter(arrayIn,kernel,numIterations,device)
-    [arrayOut] = HIP.Cuda.Mex('MeanFilter',arrayIn,kernel,numIterations,device);
+%    
+function [imageOut] = MeanFilter(imageIn,kernel,numIterations,device)
+    [imageOut] = HIP.Cuda.Mex('MeanFilter',imageIn,kernel,numIterations,device);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/MedianFilter.m b/src/MATLAB/+HIP/@Cuda/MedianFilter.m
index 28cbc93b4c0f5c92178c5213b710f4308e0fd0ec..e7436d1762d93f4d95be8cf0598baa5facf536ee 100644
--- a/src/MATLAB/+HIP/@Cuda/MedianFilter.m
+++ b/src/MATLAB/+HIP/@Cuda/MedianFilter.m
@@ -1,5 +1,5 @@
 % MedianFilter - This will calculate the median for each neighborhood defined by the kernel.
-%    arrayOut = HIP.Cuda.MedianFilter(arrayIn,kernel,[numIterations],[device])
+%    [imageOut] = HIP.Cuda.MedianFilter(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,6 +17,7 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
-function arrayOut = MedianFilter(arrayIn,kernel,numIterations,device)
-    [arrayOut] = HIP.Cuda.Mex('MedianFilter',arrayIn,kernel,numIterations,device);
+%    
+function [imageOut] = MedianFilter(imageIn,kernel,numIterations,device)
+    [imageOut] = HIP.Cuda.Mex('MedianFilter',imageIn,kernel,numIterations,device);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/Mex.mexw64 b/src/MATLAB/+HIP/@Cuda/Mex.mexw64
index d3e56d371e00aaa8f959d62c54fccec7085f1836..638de2db857e849c13b35fd852722f6031267911 100644
--- a/src/MATLAB/+HIP/@Cuda/Mex.mexw64
+++ b/src/MATLAB/+HIP/@Cuda/Mex.mexw64
@@ -1,3 +1,3 @@
 version https://git-lfs.github.com/spec/v1
-oid sha256:313b7d637667ffad14fae537d42918629d5a53bbd2d240114c55a5e43b95c3f6
-size 10465792
+oid sha256:771f4ef3470bc0354a1afe7d82f2e7775f317afec9c9ace353c4d18279087b01
+size 9447424
diff --git a/src/MATLAB/+HIP/@Cuda/MinFilter.m b/src/MATLAB/+HIP/@Cuda/MinFilter.m
index 9513b840d47a9cda9812220fd87f2367f4fd3fb0..5f35fb68b1f2313166ea57baf13672de29defc0a 100644
--- a/src/MATLAB/+HIP/@Cuda/MinFilter.m
+++ b/src/MATLAB/+HIP/@Cuda/MinFilter.m
@@ -1,5 +1,5 @@
 % MinFilter - This will set each pixel/voxel to the max value of the neighborhood defined by the given kernel.
-%    arrayOut = HIP.Cuda.MinFilter(arrayIn,kernel,[numIterations],[device])
+%    [imageOut] = HIP.Cuda.MinFilter(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,6 +17,7 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
-function arrayOut = MinFilter(arrayIn,kernel,numIterations,device)
-    [arrayOut] = HIP.Cuda.Mex('MinFilter',arrayIn,kernel,numIterations,device);
+%    
+function [imageOut] = MinFilter(imageIn,kernel,numIterations,device)
+    [imageOut] = HIP.Cuda.Mex('MinFilter',imageIn,kernel,numIterations,device);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/MultiplySum.m b/src/MATLAB/+HIP/@Cuda/MultiplySum.m
index 3499c3b5e0f5d54d3d438ae6f7560954026f1f1f..2d0bc1d07e06ef99ad5516deed8b40d1fcb9f59b 100644
--- a/src/MATLAB/+HIP/@Cuda/MultiplySum.m
+++ b/src/MATLAB/+HIP/@Cuda/MultiplySum.m
@@ -1,5 +1,5 @@
 % MultiplySum - Multiplies the kernel with the neighboring values and sums these new values.
-%    arrayOut = HIP.Cuda.MultiplySum(arrayIn,kernel,[numIterations],[device])
+%    [imageOut] = HIP.Cuda.MultiplySum(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,6 +17,7 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
-function arrayOut = MultiplySum(arrayIn,kernel,numIterations,device)
-    [arrayOut] = HIP.Cuda.Mex('MultiplySum',arrayIn,kernel,numIterations,device);
+%    
+function [imageOut] = MultiplySum(imageIn,kernel,numIterations,device)
+    [imageOut] = HIP.Cuda.Mex('MultiplySum',imageIn,kernel,numIterations,device);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/Opener.m b/src/MATLAB/+HIP/@Cuda/Opener.m
index 7f53f8e84abde678255cd7e95e0baafa944bdc18..b4baee782100e4dc2f555f8c2a3d821c16659dd3 100644
--- a/src/MATLAB/+HIP/@Cuda/Opener.m
+++ b/src/MATLAB/+HIP/@Cuda/Opener.m
@@ -1,5 +1,5 @@
 % Opener - This kernel will erode follow by a dilation.
-%    arrayOut = HIP.Cuda.Opener(arrayIn,kernel,[numIterations],[device])
+%    [imageOut] = HIP.Cuda.Opener(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,6 +17,7 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
-function arrayOut = Opener(arrayIn,kernel,numIterations,device)
-    [arrayOut] = HIP.Cuda.Mex('Opener',arrayIn,kernel,numIterations,device);
+%    
+function [imageOut] = Opener(imageIn,kernel,numIterations,device)
+    [imageOut] = HIP.Cuda.Mex('Opener',imageIn,kernel,numIterations,device);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/StdFilter.m b/src/MATLAB/+HIP/@Cuda/StdFilter.m
index ba66eec8535699afebf24b7c01eb71754acd792b..27f358a1716f6529a13ea97b5bb9640d352f8afb 100644
--- a/src/MATLAB/+HIP/@Cuda/StdFilter.m
+++ b/src/MATLAB/+HIP/@Cuda/StdFilter.m
@@ -1,5 +1,5 @@
 % StdFilter - This will take the standard deviation of the given neighborhood.
-%    arrayOut = HIP.Cuda.StdFilter(arrayIn,kernel,[numIterations],[device])
+%    [imageOut] = HIP.Cuda.StdFilter(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,6 +17,7 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
-function arrayOut = StdFilter(arrayIn,kernel,numIterations,device)
-    [arrayOut] = HIP.Cuda.Mex('StdFilter',arrayIn,kernel,numIterations,device);
+%    
+function [imageOut] = StdFilter(imageIn,kernel,numIterations,device)
+    [imageOut] = HIP.Cuda.Mex('StdFilter',imageIn,kernel,numIterations,device);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/Sum.m b/src/MATLAB/+HIP/@Cuda/Sum.m
index 36d0e4607fa8938e8f93a4c72be9e243168dfe3b..12a272ce26e37b5f747a6c56c47fa34eea7b14ca 100644
--- a/src/MATLAB/+HIP/@Cuda/Sum.m
+++ b/src/MATLAB/+HIP/@Cuda/Sum.m
@@ -1,5 +1,5 @@
 % Sum - This sums up the entire array in.
-%    valueOut = HIP.Cuda.Sum(arrayIn,[device])
+%    [imageOut] = HIP.Cuda.Sum(imageIn,[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -9,6 +9,7 @@
 %    		the data across multiple devices.
 %    
 %    	valueOut = This is the summation of the entire array.
-function valueOut = Sum(arrayIn,device)
-    [valueOut] = HIP.Cuda.Mex('Sum',arrayIn,device);
+%    
+function [imageOut] = Sum(imageIn,device)
+    [imageOut] = HIP.Cuda.Mex('Sum',imageIn,device);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/VarFilter.m b/src/MATLAB/+HIP/@Cuda/VarFilter.m
index 758d61d9ea780f912617a23795a74a38b2152254..638197b0a6fe8691ba8866cee8bd954cfab89921 100644
--- a/src/MATLAB/+HIP/@Cuda/VarFilter.m
+++ b/src/MATLAB/+HIP/@Cuda/VarFilter.m
@@ -1,5 +1,5 @@
 % VarFilter - This will take the variance deviation of the given neighborhood.
-%    arrayOut = HIP.Cuda.VarFilter(arrayIn,kernel,[numIterations],[device])
+%    [imageOut] = HIP.Cuda.VarFilter(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,6 +17,7 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
-function arrayOut = VarFilter(arrayIn,kernel,numIterations,device)
-    [arrayOut] = HIP.Cuda.Mex('VarFilter',arrayIn,kernel,numIterations,device);
+%    
+function [imageOut] = VarFilter(imageIn,kernel,numIterations,device)
+    [imageOut] = HIP.Cuda.Mex('VarFilter',imageIn,kernel,numIterations,device);
 end
diff --git a/src/MATLAB/+HIP/@Cuda/WienerFilter.m b/src/MATLAB/+HIP/@Cuda/WienerFilter.m
index bc8ccd078eec8bd84a7cff6438e186bd4b75b78f..1a43af9630e9065cbc06a99c368f3a7b2f6ea4f6 100644
--- a/src/MATLAB/+HIP/@Cuda/WienerFilter.m
+++ b/src/MATLAB/+HIP/@Cuda/WienerFilter.m
@@ -1,5 +1,5 @@
 % WienerFilter - A Wiener filter aims to denoise an image in a linear fashion.
-%    arrayOut = HIP.Cuda.WienerFilter(arrayIn,[kernel],[noiseVariance],[device])
+%    [imageOut] = HIP.Cuda.WienerFilter(imageIn,kernel,[noiseVariance],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,6 +17,7 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
-function arrayOut = WienerFilter(arrayIn,kernel,noiseVariance,device)
-    [arrayOut] = HIP.Cuda.Mex('WienerFilter',arrayIn,kernel,noiseVariance,device);
+%    
+function [imageOut] = WienerFilter(imageIn,kernel,noiseVariance,device)
+    [imageOut] = HIP.Cuda.Mex('WienerFilter',imageIn,kernel,noiseVariance,device);
 end
diff --git a/src/MATLAB/+HIP/Closure.m b/src/MATLAB/+HIP/Closure.m
index fe80d7b8fd176cdc70a78e65f8d2793290d52c3f..9e1121b75521e8c2d7cfb24391b45898486e12df 100644
--- a/src/MATLAB/+HIP/Closure.m
+++ b/src/MATLAB/+HIP/Closure.m
@@ -1,5 +1,5 @@
-% Closure - This kernel will dilate follow by an erosion.
-%    arrayOut = HIP.Closure(arrayIn,kernel,[numIterations],[device])
+% Closure - This kernel will apply a dilation followed by an erosion.
+%    [imageOut] = HIP.Closure(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -18,11 +18,11 @@
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
 
-function arrayOut = Closure(arrayIn,kernel,numIterations,device)
+function [imageOut] = Closure(imageIn,kernel,numIterations,device)
     try
-        arrayOut = HIP.Cuda.Closure(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Cuda.Closure(imageIn,kernel,numIterations,device);
     catch errMsg
         warning(errMsg.message);
-        arrayOut = HIP.Local.Closure(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Local.Closure(imageIn,kernel,numIterations,device);
     end
 end
diff --git a/src/MATLAB/+HIP/ElementWiseDifference.m b/src/MATLAB/+HIP/ElementWiseDifference.m
index d8ed3e060b1bffac1e11978e74f24f8fbbbbfefc..b09b6696d94a90f7dd4673a7d05e769cd32b6d07 100644
--- a/src/MATLAB/+HIP/ElementWiseDifference.m
+++ b/src/MATLAB/+HIP/ElementWiseDifference.m
@@ -1,5 +1,5 @@
 % ElementWiseDifference - This subtracts the second array from the first, element by element (A-B).
-%    arrayOut = HIP.ElementWiseDifference(array1In,array2In,[device])
+%    [imageOut] = HIP.ElementWiseDifference(image1In,image2In,[device])
 %    	image1In = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -14,11 +14,11 @@
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
 
-function arrayOut = ElementWiseDifference(array1In,array2In,device)
+function [imageOut] = ElementWiseDifference(image1In,image2In,device)
     try
-        arrayOut = HIP.Cuda.ElementWiseDifference(array1In,array2In,device);
+        [imageOut] = HIP.Cuda.ElementWiseDifference(image1In,image2In,device);
     catch errMsg
         warning(errMsg.message);
-        arrayOut = HIP.Local.ElementWiseDifference(array1In,array2In,device);
+        [imageOut] = HIP.Local.ElementWiseDifference(image1In,image2In,device);
     end
 end
diff --git a/src/MATLAB/+HIP/EntropyFilter.m b/src/MATLAB/+HIP/EntropyFilter.m
index 600fc33e2b6adbaa38bcbdc2ec1831df70ecefc9..22834ce8008a1ade113dcc92f23d709e61ae2deb 100644
--- a/src/MATLAB/+HIP/EntropyFilter.m
+++ b/src/MATLAB/+HIP/EntropyFilter.m
@@ -1,5 +1,5 @@
 % EntropyFilter - This calculates the entropy within the neighborhood given by the kernel.
-%    arrayOut = HIP.EntropyFilter(arrayIn,kernel,[device])
+%    [imageOut] = HIP.EntropyFilter(imageIn,kernel,[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -13,12 +13,13 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
+%    
 
-function arrayOut = EntropyFilter(arrayIn,kernel,device)
+function [imageOut] = EntropyFilter(imageIn,kernel,device)
     try
-        arrayOut = HIP.Cuda.EntropyFilter(arrayIn,kernel,device);
+        [imageOut] = HIP.Cuda.EntropyFilter(imageIn,kernel,device);
     catch errMsg
         warning(errMsg.message);
-        arrayOut = HIP.Local.EntropyFilter(arrayIn,kernel,device);
+        [imageOut] = HIP.Local.EntropyFilter(imageIn,kernel,device);
     end
 end
diff --git a/src/MATLAB/+HIP/Gaussian.m b/src/MATLAB/+HIP/Gaussian.m
index 86cef7bb488b25c00653f88d842c558b22ddbf64..9bfc841a6c92c88af1ca469bb66726e849e61a03 100644
--- a/src/MATLAB/+HIP/Gaussian.m
+++ b/src/MATLAB/+HIP/Gaussian.m
@@ -1,5 +1,5 @@
 % Gaussian - Gaussian smoothing.
-%    arrayOut = HIP.Gaussian(arrayIn,sigmas,[numIterations],[device])
+%    [imageOut] = HIP.Gaussian(imageIn,sigmas,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -16,12 +16,13 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
+%    
 
-function arrayOut = Gaussian(arrayIn,sigmas,numIterations,device)
+function [imageOut] = Gaussian(imageIn,sigmas,numIterations,device)
     try
-        arrayOut = HIP.Cuda.Gaussian(arrayIn,sigmas,numIterations,device);
+        [imageOut] = HIP.Cuda.Gaussian(imageIn,sigmas,numIterations,device);
     catch errMsg
         warning(errMsg.message);
-        arrayOut = HIP.Local.Gaussian(arrayIn,sigmas,numIterations,device);
+        [imageOut] = HIP.Local.Gaussian(imageIn,sigmas,numIterations,device);
     end
 end
diff --git a/src/MATLAB/+HIP/GetMinMax.m b/src/MATLAB/+HIP/GetMinMax.m
index b50e4d9500deabb5acaa6484417d728d60001f46..3aa37bd53626af32c16b0d9ce3792d98677f35ad 100644
--- a/src/MATLAB/+HIP/GetMinMax.m
+++ b/src/MATLAB/+HIP/GetMinMax.m
@@ -1,5 +1,5 @@
 % GetMinMax - This function finds the lowest and highest value in the array that is passed in.
-%    [minValue,maxValue] = HIP.GetMinMax(arrayIn,[device])
+%    [minVal,maxVal] = HIP.GetMinMax(imageIn,[device])
 %    	imageIn = This is a one to five dimensional array.
 %    
 %    	device (optional) = Use this if you have multiple devices and want to select one explicitly.
@@ -8,12 +8,13 @@
 %    
 %    	minValue = This is the lowest value found in the array.
 %    	maxValue = This is the highest value found in the array.
+%    
 
-function [minValue,maxValue] = GetMinMax(arrayIn,device)
+function [minVal,maxVal] = GetMinMax(imageIn,device)
     try
-        [minValue,maxValue] = HIP.Cuda.GetMinMax(arrayIn,device);
+        [minVal,maxVal] = HIP.Cuda.GetMinMax(imageIn,device);
     catch errMsg
         warning(errMsg.message);
-        [minValue,maxValue] = HIP.Local.GetMinMax(arrayIn,device);
+        [minVal,maxVal] = HIP.Local.GetMinMax(imageIn,device);
     end
 end
diff --git a/src/MATLAB/+HIP/Help.m b/src/MATLAB/+HIP/Help.m
index b2aeb1c6b850a686d407591a8b2c8d63ae95d28f..cf717d33694ffeab3a41e4e67a293153bc30a7ac 100644
--- a/src/MATLAB/+HIP/Help.m
+++ b/src/MATLAB/+HIP/Help.m
@@ -1,5 +1,4 @@
-% Help - Help on a specified command.
-%    HIP.Help(command)
-%    Print detailed usage information for the specified command.
+% Help - Print detailed usage information for the specified command.
+%    HIP.Help([command])
 function Help(command)
 end
diff --git a/src/MATLAB/+HIP/HighPassFilter.m b/src/MATLAB/+HIP/HighPassFilter.m
index f34c3fb9518da73fa898d0d3720b0af9272cf17b..a90189ed02d51f8b40e6930f2c99595dad825465 100644
--- a/src/MATLAB/+HIP/HighPassFilter.m
+++ b/src/MATLAB/+HIP/HighPassFilter.m
@@ -1,5 +1,5 @@
 % HighPassFilter - Filters out low frequency by subtracting a Gaussian blurred version of the input based on the sigmas provided.
-%    arrayOut = HIP.HighPassFilter(arrayIn,sigmas,[device])
+%    [imageOut] = HIP.HighPassFilter(imageIn,sigmas,[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -12,12 +12,13 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
+%    
 
-function arrayOut = HighPassFilter(arrayIn,sigmas,device)
+function [imageOut] = HighPassFilter(imageIn,sigmas,device)
     try
-        arrayOut = HIP.Cuda.HighPassFilter(arrayIn,sigmas,device);
+        [imageOut] = HIP.Cuda.HighPassFilter(imageIn,sigmas,device);
     catch errMsg
         warning(errMsg.message);
-        arrayOut = HIP.Local.HighPassFilter(arrayIn,sigmas,device);
+        [imageOut] = HIP.Local.HighPassFilter(imageIn,sigmas,device);
     end
 end
diff --git a/src/MATLAB/+HIP/IdentityFilter.m b/src/MATLAB/+HIP/IdentityFilter.m
index 1a47270229c16029a8f6116c1416ee4e37624f59..12fefae6586fc76467fe115cc484109f778d1ce0 100644
--- a/src/MATLAB/+HIP/IdentityFilter.m
+++ b/src/MATLAB/+HIP/IdentityFilter.m
@@ -1,5 +1,5 @@
-% IdentityFilter - Identity Filter for testing. Copies image data to GPU memory and back into output image
-%    arrayOut = HIP.IdentityFilter(arrayIn,[device])
+% IdentityFilter - Identity Filter for testing. Copies image data to GPU memory and back into output image.
+%    [imageOut] = HIP.IdentityFilter(imageIn,[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -9,12 +9,13 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
+%    
 
-function arrayOut = IdentityFilter(arrayIn,device)
+function [imageOut] = IdentityFilter(imageIn,device)
     try
-        arrayOut = HIP.Cuda.IdentityFilter(arrayIn,device);
+        [imageOut] = HIP.Cuda.IdentityFilter(imageIn,device);
     catch errMsg
         warning(errMsg.message);
-        arrayOut = HIP.Local.IdentityFilter(arrayIn,device);
+        [imageOut] = HIP.Local.IdentityFilter(imageIn,device);
     end
 end
diff --git a/src/MATLAB/+HIP/Info.m b/src/MATLAB/+HIP/Info.m
index c73ddaad0225a2fab1fcf4f6a4b086fb804a8da7..8c867debca80ad4cf759a6652d8217e58326215f 100644
--- a/src/MATLAB/+HIP/Info.m
+++ b/src/MATLAB/+HIP/Info.m
@@ -1,16 +1,17 @@
 % Info - Get information on all available mex commands.
-%    commandInfo = HIP.Info()
+%    [cmdInfo] = HIP.Info()
 %    Returns commandInfo structure array containing information on all mex commands.
 %       commandInfo.command - Command string
-%       commandInfo.outArgs - Cell array of output arguments
-%       commandInfo.inArgs - Cell array of input arguments
-%       commandInfo.helpLines - Cell array of input arguments
+%       commandInfo.outArgs - Comma-delimited string list of output arguments
+%       commandInfo.inArgs - Comma-delimited string list of input arguments
+%       commandInfo.helpLines - Help string
+%    
 
-function commandInfo = Info()
+function [cmdInfo] = Info()
     try
-        commandInfo = HIP.Cuda.Info();
+        [cmdInfo] = HIP.Cuda.Info();
     catch errMsg
         warning(errMsg.message);
-        commandInfo = HIP.Local.Info();
+        [cmdInfo] = HIP.Local.Info();
     end
 end
diff --git a/src/MATLAB/+HIP/LoG.m b/src/MATLAB/+HIP/LoG.m
index b67f335a8c4dc22f27a212d8510bb4856261bc5a..6cb94a63c44bc1793ffffaa7faf00d9708626ad9 100644
--- a/src/MATLAB/+HIP/LoG.m
+++ b/src/MATLAB/+HIP/LoG.m
@@ -1,5 +1,5 @@
 % LoG - Apply a Lapplacian of Gaussian filter with the given sigmas.
-%    arrayOut = HIP.LoG(arrayIn,sigmas,[device])
+%    [imageOut] = HIP.LoG(imageIn,sigmas,[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -12,12 +12,13 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
+%    
 
-function arrayOut = LoG(arrayIn,sigmas,device)
+function [imageOut] = LoG(imageIn,sigmas,device)
     try
-        arrayOut = HIP.Cuda.LoG(arrayIn,sigmas,device);
+        [imageOut] = HIP.Cuda.LoG(imageIn,sigmas,device);
     catch errMsg
         warning(errMsg.message);
-        arrayOut = HIP.Local.LoG(arrayIn,sigmas,device);
+        [imageOut] = HIP.Local.LoG(imageIn,sigmas,device);
     end
 end
diff --git a/src/MATLAB/+HIP/MaxFilter.m b/src/MATLAB/+HIP/MaxFilter.m
index 6c4a71b8be91af797f8d008d45a0c284d564de78..320a3022af3b17e1d3cf2d0c052296e8537ea4e4 100644
--- a/src/MATLAB/+HIP/MaxFilter.m
+++ b/src/MATLAB/+HIP/MaxFilter.m
@@ -1,5 +1,5 @@
 % MaxFilter - This will set each pixel/voxel to the max value of the neighborhood defined by the given kernel.
-%    arrayOut = HIP.MaxFilter(arrayIn,kernel,[numIterations],[device])
+%    [imageOut] = HIP.MaxFilter(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,12 +17,13 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
+%    
 
-function arrayOut = MaxFilter(arrayIn,kernel,numIterations,device)
+function [imageOut] = MaxFilter(imageIn,kernel,numIterations,device)
     try
-        arrayOut = HIP.Cuda.MaxFilter(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Cuda.MaxFilter(imageIn,kernel,numIterations,device);
     catch errMsg
         warning(errMsg.message);
-        arrayOut = HIP.Local.MaxFilter(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Local.MaxFilter(imageIn,kernel,numIterations,device);
     end
 end
diff --git a/src/MATLAB/+HIP/MeanFilter.m b/src/MATLAB/+HIP/MeanFilter.m
index ffb7569f76b6ff53cd4fd1fd54fbde3985a43fec..8b681294101a19d995bebc7dbde9958a40ce90c9 100644
--- a/src/MATLAB/+HIP/MeanFilter.m
+++ b/src/MATLAB/+HIP/MeanFilter.m
@@ -1,5 +1,5 @@
 % MeanFilter - This will take the mean of the given neighborhood.
-%    arrayOut = HIP.MeanFilter(arrayIn,kernel,[numIterations],[device])
+%    [imageOut] = HIP.MeanFilter(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,12 +17,13 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
+%    
 
-function arrayOut = MeanFilter(arrayIn,kernel,numIterations,device)
+function [imageOut] = MeanFilter(imageIn,kernel,numIterations,device)
     try
-        arrayOut = HIP.Cuda.MeanFilter(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Cuda.MeanFilter(imageIn,kernel,numIterations,device);
     catch errMsg
         warning(errMsg.message);
-        arrayOut = HIP.Local.MeanFilter(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Local.MeanFilter(imageIn,kernel,numIterations,device);
     end
 end
diff --git a/src/MATLAB/+HIP/MedianFilter.m b/src/MATLAB/+HIP/MedianFilter.m
index 73209ee3fc1c73cf941b54ed4824b770632be19b..0a12d4c2b0d7ddde73cce6018ef0ebecc7ad370e 100644
--- a/src/MATLAB/+HIP/MedianFilter.m
+++ b/src/MATLAB/+HIP/MedianFilter.m
@@ -1,5 +1,5 @@
 % MedianFilter - This will calculate the median for each neighborhood defined by the kernel.
-%    arrayOut = HIP.MedianFilter(arrayIn,kernel,[numIterations],[device])
+%    [imageOut] = HIP.MedianFilter(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,12 +17,13 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
+%    
 
-function arrayOut = MedianFilter(arrayIn,kernel,numIterations,device)
+function [imageOut] = MedianFilter(imageIn,kernel,numIterations,device)
     try
-        arrayOut = HIP.Cuda.MedianFilter(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Cuda.MedianFilter(imageIn,kernel,numIterations,device);
     catch errMsg
         warning(errMsg.message);
-        arrayOut = HIP.Local.MedianFilter(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Local.MedianFilter(imageIn,kernel,numIterations,device);
     end
 end
diff --git a/src/MATLAB/+HIP/MinFilter.m b/src/MATLAB/+HIP/MinFilter.m
index 6d720660e65a986bd40957fb3ee0350a20f9948e..48b3ffbd8a07ad1b9b6b597f2cf756dae71a2fb3 100644
--- a/src/MATLAB/+HIP/MinFilter.m
+++ b/src/MATLAB/+HIP/MinFilter.m
@@ -1,5 +1,5 @@
 % MinFilter - This will set each pixel/voxel to the max value of the neighborhood defined by the given kernel.
-%    arrayOut = HIP.MinFilter(arrayIn,kernel,[numIterations],[device])
+%    [imageOut] = HIP.MinFilter(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,12 +17,13 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
+%    
 
-function arrayOut = MinFilter(arrayIn,kernel,numIterations,device)
+function [imageOut] = MinFilter(imageIn,kernel,numIterations,device)
     try
-        arrayOut = HIP.Cuda.MinFilter(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Cuda.MinFilter(imageIn,kernel,numIterations,device);
     catch errMsg
         warning(errMsg.message);
-        arrayOut = HIP.Local.MinFilter(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Local.MinFilter(imageIn,kernel,numIterations,device);
     end
 end
diff --git a/src/MATLAB/+HIP/MultiplySum.m b/src/MATLAB/+HIP/MultiplySum.m
index caa315510d390ee656f00fd73c298e9ac33d075a..ab6f06ea6359bf48f9c6e2a46d2610dd3e7fb8f6 100644
--- a/src/MATLAB/+HIP/MultiplySum.m
+++ b/src/MATLAB/+HIP/MultiplySum.m
@@ -1,5 +1,5 @@
 % MultiplySum - Multiplies the kernel with the neighboring values and sums these new values.
-%    arrayOut = HIP.MultiplySum(arrayIn,kernel,[numIterations],[device])
+%    [imageOut] = HIP.MultiplySum(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,12 +17,13 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
+%    
 
-function arrayOut = MultiplySum(arrayIn,kernel,numIterations,device)
+function [imageOut] = MultiplySum(imageIn,kernel,numIterations,device)
     try
-        arrayOut = HIP.Cuda.MultiplySum(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Cuda.MultiplySum(imageIn,kernel,numIterations,device);
     catch errMsg
         warning(errMsg.message);
-        arrayOut = HIP.Local.MultiplySum(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Local.MultiplySum(imageIn,kernel,numIterations,device);
     end
 end
diff --git a/src/MATLAB/+HIP/Opener.m b/src/MATLAB/+HIP/Opener.m
index 2246b8a3aa7800cb93e790fce77784abf9d79767..21f6a5bcb2568fd6e6c9f4c4ab8b251bcca7037a 100644
--- a/src/MATLAB/+HIP/Opener.m
+++ b/src/MATLAB/+HIP/Opener.m
@@ -1,5 +1,5 @@
 % Opener - This kernel will erode follow by a dilation.
-%    arrayOut = HIP.Opener(arrayIn,kernel,[numIterations],[device])
+%    [imageOut] = HIP.Opener(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,12 +17,13 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
+%    
 
-function arrayOut = Opener(arrayIn,kernel,numIterations,device)
+function [imageOut] = Opener(imageIn,kernel,numIterations,device)
     try
-        arrayOut = HIP.Cuda.Opener(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Cuda.Opener(imageIn,kernel,numIterations,device);
     catch errMsg
         warning(errMsg.message);
-        arrayOut = HIP.Local.Opener(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Local.Opener(imageIn,kernel,numIterations,device);
     end
 end
diff --git a/src/MATLAB/+HIP/StdFilter.m b/src/MATLAB/+HIP/StdFilter.m
index 46360e6acf2f6c2ca3e622ba4f18305e4a4f6ff0..2fe520c1b9993faf20112483f74236291006f5ed 100644
--- a/src/MATLAB/+HIP/StdFilter.m
+++ b/src/MATLAB/+HIP/StdFilter.m
@@ -1,5 +1,5 @@
 % StdFilter - This will take the standard deviation of the given neighborhood.
-%    arrayOut = HIP.StdFilter(arrayIn,kernel,[numIterations],[device])
+%    [imageOut] = HIP.StdFilter(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,12 +17,13 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
+%    
 
-function arrayOut = StdFilter(arrayIn,kernel,numIterations,device)
+function [imageOut] = StdFilter(imageIn,kernel,numIterations,device)
     try
-        arrayOut = HIP.Cuda.StdFilter(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Cuda.StdFilter(imageIn,kernel,numIterations,device);
     catch errMsg
         warning(errMsg.message);
-        arrayOut = HIP.Local.StdFilter(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Local.StdFilter(imageIn,kernel,numIterations,device);
     end
 end
diff --git a/src/MATLAB/+HIP/Sum.m b/src/MATLAB/+HIP/Sum.m
index 35296914936c9d01c61cea9a8f1db68daf07d53b..68eab89b43caf566748e2c8ad82c13fe1dca2e3f 100644
--- a/src/MATLAB/+HIP/Sum.m
+++ b/src/MATLAB/+HIP/Sum.m
@@ -1,5 +1,5 @@
 % Sum - This sums up the entire array in.
-%    valueOut = HIP.Sum(arrayIn,[device])
+%    [imageOut] = HIP.Sum(imageIn,[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -9,12 +9,13 @@
 %    		the data across multiple devices.
 %    
 %    	valueOut = This is the summation of the entire array.
+%    
 
-function valueOut = Sum(arrayIn,device)
+function [imageOut] = Sum(imageIn,device)
     try
-        valueOut = HIP.Cuda.Sum(arrayIn,device);
+        [imageOut] = HIP.Cuda.Sum(imageIn,device);
     catch errMsg
         warning(errMsg.message);
-        valueOut = HIP.Local.Sum(arrayIn,device);
+        [imageOut] = HIP.Local.Sum(imageIn,device);
     end
 end
diff --git a/src/MATLAB/+HIP/VarFilter.m b/src/MATLAB/+HIP/VarFilter.m
index 738cdbceaad4662b30cb2791e4d0b9164dcd4349..1e3d642e3495b3363dc293646b1b1231444ee1ef 100644
--- a/src/MATLAB/+HIP/VarFilter.m
+++ b/src/MATLAB/+HIP/VarFilter.m
@@ -1,5 +1,5 @@
 % VarFilter - This will take the variance deviation of the given neighborhood.
-%    arrayOut = HIP.VarFilter(arrayIn,kernel,[numIterations],[device])
+%    [imageOut] = HIP.VarFilter(imageIn,kernel,[numIterations],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,12 +17,13 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
+%    
 
-function arrayOut = VarFilter(arrayIn,kernel,numIterations,device)
+function [imageOut] = VarFilter(imageIn,kernel,numIterations,device)
     try
-        arrayOut = HIP.Cuda.VarFilter(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Cuda.VarFilter(imageIn,kernel,numIterations,device);
     catch errMsg
         warning(errMsg.message);
-        arrayOut = HIP.Local.VarFilter(arrayIn,kernel,numIterations,device);
+        [imageOut] = HIP.Local.VarFilter(imageIn,kernel,numIterations,device);
     end
 end
diff --git a/src/MATLAB/+HIP/WienerFilter.m b/src/MATLAB/+HIP/WienerFilter.m
index da0a60727b221d891d629830c613a606326293e6..398311f9678fe758d582bdb44b56ffcd99ce6115 100644
--- a/src/MATLAB/+HIP/WienerFilter.m
+++ b/src/MATLAB/+HIP/WienerFilter.m
@@ -1,5 +1,5 @@
 % WienerFilter - A Wiener filter aims to denoise an image in a linear fashion.
-%    arrayOut = HIP.WienerFilter(arrayIn,[kernel],[noiseVariance],[device])
+%    [imageOut] = HIP.WienerFilter(imageIn,kernel,[noiseVariance],[device])
 %    	imageIn = This is a one to five dimensional array. The first three dimensions are treated as spatial.
 %    		The spatial dimensions will have the kernel applied. The last two dimensions will determine
 %    		how to stride or jump to the next spatial block.
@@ -17,12 +17,13 @@
 %    		the data across multiple devices.
 %    
 %    	imageOut = This will be an array of the same type and shape as the input array.
+%    
 
-function arrayOut = WienerFilter(arrayIn,kernel,noiseVariance,device)
+function [imageOut] = WienerFilter(imageIn,kernel,noiseVariance,device)
     try
-        arrayOut = HIP.Cuda.WienerFilter(arrayIn,kernel,noiseVariance,device);
+        [imageOut] = HIP.Cuda.WienerFilter(imageIn,kernel,noiseVariance,device);
     catch errMsg
         warning(errMsg.message);
-        arrayOut = HIP.Local.WienerFilter(arrayIn,kernel,noiseVariance,device);
+        [imageOut] = HIP.Local.WienerFilter(imageIn,kernel,noiseVariance,device);
     end
 end